ATTESTATION OF CONFORMITY

DEKRA

A D DEKR CRA D D DEK FKRA DOFK DEKRA DE DEKR ia de DEKR D DEK KRA D D DEM KRA ! DOF DEKRA A DD DEKRA RA D DEKR KRA D D DEKI D DE DEKRA DD DEKR/ RA DO D DEKR (RA D D DEK

> KRA D D DE

DEKRA

RA D DI DEKRA RA D D

DEKRA

(RA D

dekr Kra J D dek Issued to:SolaX Power Network Technology (Zhejiang) Co., Ltd.
No. 288 Shizhu Road, Tonglu Economic Development Zone, Dongxing District
311500, Tonglu City, Zhejiang Province, ChinaFor the product:Grid-connected photovoltaic inverter

Trade name:

Type/Model:	X1-3.0-T-D(L), X1-3.0-T-D(O), X1-3.0-T-N(L), X1-3.0-T-N(O),
	X1-3.3-T-D(L), X1-3.3-T-D(O), X1-3.3-T-N(L), X1-3.3-T-N(O),
	X1-3.6-T-D(L), X1-3.6-T-D(O), X1-3.6-T-N(L), X1-3.6-T-N(O)

Ratings: See Annex

Manufactured by: SolaX Power Network Technology (Zhejiang) Co., Ltd. No. 288 Shizhu Road, Tonglu Economic Development Zone, Dongxing District 311500, Tonglu City, Zhejiang Province, China

Requirements: Engineering Recommendation/G98 Issue // – Amendment // -/2018

This Attestation is granted on account of an examination by DEKRA, the results of which are laid down in test report no. 6050485.50

The examination has been carried out on one single specimen of the product, submitted by the manufacturer.

The Attestation does not include an assessment of the manufacturer's production. Conformity of his production with the specimen tested by DEKRA is not the responsibility of DEKRA.

Shanghai, 16 April 2019

Number: 6050485.01AOC

DEKRA Testing and Certification (Shanghai) Ltd.

Kreny Lin Certification Manager

 $\ensuremath{\mathbb{C}}$ Integral publication of this attestation and adjoining reports is allowed

Page 1 of 13

DEKRA Testing and Certification (Shanghai) Ltd.

3F #250 Jiangchangsan Road Building 16 Headquarter Economy Park Shibei Hi-Tech Park, Zhabei District Shanghai 200436 China T +86 21 6056 7666 F +86 21 6056 7555 www.dekra-certification.com

Ratings of the test product:

X1-3.0-T-D(L), X1-3.0-T-D(O), X1-3.0-T-N(L), X1-3.0-T-N(O): PV input: Max. 550 Vdc, MPPT voltage range: 70-550 Vdc, max 12 A/12 A, Isc PV: 12.8 A/12.8 A Output: 230 Vac, 50 Hz, 3000 VA, max 14 A

X1-3.3-T-D(L), X1-3.3-T-D(O), X1-3.3-T-N(L), X1-3.3-T-N(O):

PV input: Max. 550 Vdc, MPPT voltage range: 70-550 Vdc, max 12 A/12 A, Isc PV: 12.8 A/12.8 A Output: 230 Vac, 50 Hz, 3300 VA, max 15 A

X1-3.6-T-D(L), X1-3.6-T-D(O), X1-3.6-T-N(L), X1-3.6-T-N(O):

PV input: Max. 550 Vdc, MPPT voltage range: 70-550 Vdc, max 12 A/12 A, Isc PV: 12.8 A/12.8 A Output: 230 Vac, 50 Hz, 3680 VA, max 16 A

G98/1 Form C: Type Verification Test Report

Extract form test report number.:

6050485.50

Operating Range: This test should be carried out as specified in EN 50438 D.3.1.

Active Power shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter **Micro-generator** (eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG Micro-generator the mechanical drive system may be replaced by a test bench motor.

Test 1 Voltage = 85% of nor Frequency = 47.5 Hz Power factor = 1 Period of test 90 min	ninal (195.5 V)				
Test 2	ules				
Voltage = 110% of no	ominal (253 V).				
Frequency = 51.5 Hz					
Power factor = 1 Period of test 90 minutes	utes				
Test 3 Voltage = 110% of no Frequency = 52.0 Hz Power factor = 1 Period of test 15 min					
Test 1					Р
Model: X1-3.6-T-D(L))				
Measured Voltage	Measured	Measured Power	Measured Power	Test 1	
(V)	Frequency (Hz)	(W)	factor	(Minu	tes)
195.55	47.50	3602.15	0.9985	90)
Test 2		•			Р
Model: X1-3.6-T-D(L)				
Measured Voltage	Measured	Measured Power	Measured Power	Test	Time
(V)	Frequency (Hz)	(W)	factor	(Minu	tes)
253.51	51.50	3619.91	0.9956	90)
Test 3					Р
Model: X1-3.6-T-D(L)				
Voltage (V)	Frequency (Hz)	Power (W)	Power factor	Time (M	inutes)

P

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2

Micro-generator rating per phase (rpp)		3.68	kW			
Harmonic		of Registered		100% of Registered Capacity		/*3.68/rpp
	Measured Value (MV) in Amps	Normalised Value (NV) in Amps	Measured Value (MV) in Amps	Normalised Value (NV) in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.02	0.02	0.19	0.19	1.080	
3	0.06	0.06	0.09	0.09	2.300	
4	0.01	0.01	0.09	0.09	0.430	
5	0.09	0.09	0.14	0.14	1.140	
6	0.01	0.01	0.06	0.06	0.300	
7	0.10	0.10	0.15	0.15	0.770	
8	0.01	0.01	0.04	0.04	0.230	MAN AL AND ALL AND
9	0.13	0.13	0.21	0.21	0.400	
10	0.01	0.01	0.04	0.04	0.184	
11	0.06	0.06	0.09	0.09	0.330	
12	0.06	0.06	0.07	0.07	0.153	
13	0.03	0.03	0.06	0.06	0.210	
14	0.07	0.07	0.08	0.08	0.131	a disso in the second
15	0.02	0.02	0.03	0.03	0.150	
16	0.01	0.01	0.01	0.01	0.115	
17	0.02	0.02	0.04	0.04	0.132	
18	0.01	0.01	0.01	0.01	0.102	
19	0.01	0.01	0.02	0.02	0.118	
20	0.01	0.01	0.01	0.01	0.092	Maria Maria Sa
21	0.01	0.01	0.02	0.02	0.107	0.160
22	0.01	0.01	0.01	0.01	0.084	
23	0.01	0.01	0.01	0.01	0.098	0.147
24	0.01	0.01	0.01	0.01	0.077	
25	0.01	0.01	0.01	0.01	0.090	0.135
26	0.01	0.01	0.01	0.01	0.071	
27	0.01	0.01	0.01	0.01	0.083	0.124
28	0.01	0.01	0.01	0.01	0.066	
29	0.01	0.01	0.01	0.01	0.078	0.117
30	0.01	0.01	0.01	0.01	0.061	
31	0.01	0.01	0.01	0.01	0.073	0.109
32	0.01	0.01	0.01	0.01	0.058	

DEKRA

P

33	0.01	0.01	0.01	0.01	0.068	0.102
34	0.01	0.01	0.01	0.01	0.054	
35	0.01	0.01	0.01	0.01	0.064	0.096
36	0.01	0.02	0.01	0.01	0.051	
37	0.01	0.02	0.01	0.01	0.061	0.091
38	0.01	0.02	0.01	0.01	0.048	
39	0.01	0.02	0.01	0.01	0.058	0.087
40	0.01	0.02	0.01	0.01	0.046	

Note: the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2.

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2

Model: X1-3.0-T-D(L)

Micro-generator rating per phase (rpp)		3.0	kW					
Harmonic		of Registered		100% of Registered Capacity		NV=MV*3.68/rpp		
	Measured Value (MV) in Amps	Normalised Value (NV) in Amps	Measured Value (MV) in Amps	Normalised Value (NV) in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit fo odd harmonics 21 and above		
2	0.02	0.02	0.16	0.20	1.080			
3	0.07	0.09	0.08	0.10	2.300			
4	0.01	0.01	0.02	0.02	0.430			
5	0.09	0.11	0.13	0.16	1.140			
6	0.01	0.01	0.04	0.05	0.300			
7	0.08	0.10	0.14	0.17	0.770			
8	0.02	0.02	0.02	0.02	0.230			
9	0.09	0.11	0.19	0.23	0.400			
10	0.01	0.01	0.01	0.01	0.184			
11	0.05	0.06	0.08	0.10	0.330			
12	0.01	0.01	0.02	0.02	0.153			
13	0.03	0.04	0.06	0.07	0.210			
14	0.01	0.01	0.01	0.01	0.131			
15	0.02	0.02	0.03	0.04	0.150			
16	0.01	0.01	0.01	0.01	0.115			
17	0.01	0.01	0.03	0.04	0.132			
18	0.01	0.01	0.01	0.01	0.102	and the second second		
19	0.01	0.01	0.03	0.04	0.118			
20	0.01	0.01	0.01	0.01	0.092			

DEKRA

21	0.01	0.01	0.02	0.02	0.107	0.160
22	0.01	0.01	0.01	0.01	0.084	
23	0.01	0.01	0.01	0.01	0.098	0.147
24	0.01	0.01	0.01	0.01	0.077	
25	0.01	0.01	0.01	0.01	0.090	0.135
26	0.01	0.01	0.01	0.01	0.071	
27	0.01	0.01	0.01	0.01	0.083	0.124
28	0.01	0.01	0.01	0.01	0.066	
29	0.01	0.01	0.01	0.01	0.078	0.117
30	0.01	0.01	0.01	0.01	0.061	
31	0.01	0.01	0.01	0.01	0.073	0.109
32	0.01	0.01	0.01	0.01	0.058	
33	0.01	0.01	0.01	0.01	0.068	0.102
34	0.01	0.01	0.01	0.01	0.054	
35	0.01	0.01	0.01	0.01	0.064	0.096
36	0.01	0.01	0.01	0.01	0.051	
37	0.01	0.01	0.01	0.01	0.061	0.091
38	0.01	0.01	0.01	0.01	0.048	
39	0.01	0.01	0.01	0.01	0.058	0.087
40	0.01	0.01	0.01	0.01	0.046	

Note: the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2.

Power Quality - Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous).

Ρ

Model: X1-3.6-T-D(L)

	Starting			Stopping			Running	
	dmax	dc	d(t)	dmax	dc	d(t)	Pst	Plt 2 hours
Measured Values	0.08%	0.05	0	0.08%	0.05	0	0.12	0.13
Normalised to standard impedance and 3.68kW for multiple units	0.08%	0.05	0	0.08%	0.05	0	0.12	0.13
Limits set under BS EN 61000-3- 2	4%	3.3%	3.3% 500ms	4%	3.3%	3.3% 500ms	1.0	0.65

e phase and split single phase Micro-generators.

^ Applies to single phase Micro-generators and Micro-generators using two phases on a three phase

system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 $\ensuremath{\Omega}$

Two phase units in a three phase system reference source resistance is 0.4 Ω .

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24 $\Omega.$

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

Power quality – DC injection: This test should be carried out in accordance with EN 50438 Annex D.3.10

Р

Mode	I: X1	-3.6-7	-D(L)	
------	-------	--------	-------	--

Test power level	20%	50%	75%	100%
Recorded value in Amps	0.0225	0.0321	0.0356	0.0258
as % of rated AC current	0.14%	0.20%	0.22%	0.16%
Limit	0.25%	0.25%	0.25%	0.25%

Power quality – DC injection Annex D.3.10	n: This test shou	ld be carried out in	accordance with E	N 50438	Ρ
Model: X1-3.0-T-D(L)					
Test power level	20%	50%	75%	100%	
Recorded value in Amps	0.0193	0.0225	0.0221	0.0267	
as % of rated AC current	0.12%	0.14%	0.14%	0.16%	
Limit	0.25%	0.25%	0.25%	0.25%	

 Power Quality – Power factor: This test shall be carried out in accordance with EN 50538

 Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within ±1.5%

 of the stated level during the test.

Model: X1-3.6-T-D(L)			
Voltage	216.2 V	230 V	253 V
20% of Registered Capacity	0.9949	0.9936	0.9918
50% of Registered Capacity	0.9992	0.9990	0.9992
75% of Registered Capacity	0.9995	0.9995	0.9993
100% of Registered Capacity	0.9960	0.9996	0.9995
Limit	>0.95	>0.95	>0.95

Power Quality – Power factor: This test shall be carried out in accordance with EN 50538 Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within ±1.5% of the stated level during the test.

Model: X1-3.0-T-D(L)

Model: XI 0.0 I D(L)			
Voltage	216.2 V	230 V	253 V
20% of Registered Capacity	0.9966	0.9965	0.9932
50% of Registered Capacity	0.9987	0.9984	0.9979
75% of Registered Capacity	0.9983	0.9980	0.9976
100% of Registered Capacity	0.9987	0.9983	0.9978
Limit	>0.95	>0.95	>0.95

Protection – Frequency tests: These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98 Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous)

Р

P

P

Model: X1-3.6-T-D(L)

Function	Setting		Trip test		"No trip tests"	
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5 Hz	20 s	47.5Hz	20.16s	47.7 Hz 25 s	No trip

Model: X1-3.6-T-D(L)

U/F stage 2	47 Hz	0.5 s	47.0Hz	0.5296s	47.2 Hz 19.98 s	No trip
					46.8 Hz 0.48 s	No trip
O/F	52.0Hz	0.5s	52.0Hz	0.608s	51.8 Hz 89.98 s	No trip
					52.2 Hz 0.48 s	No trip

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Voltage tests: These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98 Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous)

P

Function	Function Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	184.0V	2.5s	182.2V	2.529s	188 V 3.50 s	No trip
					180 V 2.48 s	No trip
O/V stage 1	262.2V	1.0s	261.3V	1.052s	258.2 V 2.0 s	No trip
O/V stage 2	273.7V	0.5s	273.7V	0.540s	269.7 V 0.98 s	No trip
					277.7 V 0.48 s	No trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

For Inverters teste following table.			ang sub set of			F
Model: X1-3.6-T-D((L)					
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is	147 ms	136 ms	155 ms	162 ms	118 ms	144 ms

Protection – Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous).

Model: X1-3.6-T-D(L)

Vector Shift	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.0 Hz	+50 degrees	No trip
Negative Vector Shift	50.0 Hz	- 50 degrees	No trip

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous).

Р

P

Model: X1-3.6-T-D(L)

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	No trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	No trip

Limited Frequency Se accordance with EN 50 be carried out using the	438 Annex D.3.3 Powe	r response to ov	er- frequency.	The test should	Ρ
Model: X1-3.6-T-D(L)					
Test sequence at Registered	Measured Active Power	Frequency (Hz)	∆ P _{E60} /Pn (%)	Primary Power	Active Power

DEKRA

Step a) 50.00 Hz ±0.01 Hz	3563	50.00		Photovoltaic	-
Step b) 50.45 Hz ±0.05 Hz	3500	50.45	-0.76%	array simulator	-
Step c) 50.70 Hz ±0.10 Hz	3361	50.70	0.33%		-
Step d) 51.15 Hz ±0.05 Hz	3028	51.15	-0.02%		-
Step e) 50.70 Hz ±0.10 Hz	3323	50.70	-0.73%		-
Step f) 50.45 Hz ±0.05 Hz	3495	50.45	-0.90%		-
Step g) 50.00 Hz ±0.01 Hz	3540	50.00	-		10%
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency (Hz)	∆ P _{E60} /Pn (%)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	1797	50.00	-	Photovoltaic	-
Step b) 50.45 Hz ±0.05 Hz	1767	50.45	0.50%	array simulator	-
Step c) 50.70 Hz ±0.10 Hz	1675	50.70	0.44%		-
Step d) 51.15 Hz ±0.05 Hz	1516	51.15	0.52%		-
Step e) 50.70 Hz ±0.10 Hz	1649	50.70	-0.28%		-
Step f) 50.45 Hz ±0.05 Hz	1715	50.45	-0.95%		-
Step g) 50.00 Hz ±0.01 Hz	1785	50.00	-		10%

Steps as defined in EN 50438

Assessment criteria

The test is regarded as passed:

a) For adjustable micro-generators, if:

 the active power drops between the previously mentioned measuring points b) and f) with the set gradient PM per Hz with an increase in frequency or increases when the frequency decreases once more;
 the maximum occurring active power gradient at point j) is less than the configured maximum active power per minute;

3) the active power value of the set value determined by the gradient characteristic curve does not deviate by more than + 10 % nominal power of the micro-generator;

4) the settling time is equal or below 2 s with an intentional delay set to zero.

b) For partly adjustable micro-generators, and non-adjustable micro-generators if:

1) they behave as described in a) inside their control range and,

2) outside the control range, the power supplied when leaving the control range remains constant until disconnection. Disconnection shall occur at the latest at f_{max} .

Power output with falling frequence EN 50438 Annex D.3.2 active po			accordance with	Ρ
Model: X1-3.6-T-D(L)				
Test sequence	Measured Active	Frequency	Primary powe	er source
Test a) 50 Hz ± 0.01 Hz	3556	50.00	Photovoltaic array simulator	
Test b) Point between 49.5 Hz and 49.6 Hz	3562	49.50	Photovoltaic array simulator	
Test c) Point between 47.5 Hz and 47.6 Hz	3567	47.50	Photovoltaic a simulator	array

Re-connection	timer.				Р	
Model: X1-3.6-T	-D(L)					
Test should prov	ve that the reconr	nection sequence st	arts after a minimu	im delay of 20 s fo	r restoration of	
Time delay setting	Measured delay	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 2.				
50s	54.49s	At 266.2 V	At 196.1 V	At 47.4 Hz	At 52.1 Hz	
Confirmation tha generator does		No reconnection	No reconnection	No reconnection	No reconnection	

Fault level contribution: These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (**Inverter** connected) and Annex A2 A.2.3.4 (Synchronous).

Ρ

Model: X1-3.6-T-D(L)

For machines with electro-magnetic output			For Inverter output		
Parameter	Symbol	Value	Time after	Volts	Amps
Peak Short Circuit current	i _p	N/A	20 ms	135 V	21.3 A
Initial Value of aperiodic current	A	N/A	100 ms	38 V	0.6 A
Initial symmetrical short-circuit	I _k	N/A	250 ms	27 V	0.3 A
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500 ms	20 V	0.1 A
Reactance/Resistance Ratio of source*	×IR	N/A	Time to trip	0.045	In seconds

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot.

Logic Interface.	Yes
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).	N/A
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	N/A